欢迎访问无人驾驶网! 本站服务 帮助中心
我要求购 手机版 0755-85260609

d88尊龙真人,  早在今年5月22日,深交所曾发布《关于对可转换公司债券实施盘中临时停牌有关事项的通知》(深证会〔2020〕268号),对可转债盘中临时停牌措施做出了详细的规定。在疫情冲击之下,很多人从事了网络销售,他们可能只是摊贩或者是无照经营者。  居住在萨摩斯岛的华人李先生,在当地从事零售行业。,”  刘闯说的乱停乱占,主要指的就是老年代步车。   会议强调,深入学习贯彻习近平总书记重要讲话和五中全会精神,是当前和今后一个时期的重大政治任务。  【解说】疫情防控期间,新疆喀什地区各大商场、超市,粮油、米面、蔬菜和肉类库存供应充足,广大消费者理性消费,未出现盲目抢购、大量囤积商品的现象。  在开幕式现场,奉台“家·宣讲”讲师团受聘仪式、《“相约奉化”2020海峡两岸家风家训名家书法邀请作品集》发布赠书仪式及“家风·家训·家教”主题论坛等活动如期举办。Nationsforeignexchangeholdingsdropby$s$reofcapitaloutflows,saidexperts,sforeignexchangereserves,whichwereusedasacurrencydefensewhentheyuansufferedstrongdepreciationpressuretwoyearsago,hasdropped$,after12monthsofgrowthsinceFebruary2017,,onMonday,theonshoreChineseyuan,,,,,thehighestlevelsinceMay2011,whichhasspsincreasedinterestratestodealwithsurgingcapitaloutflows,,formergovernorofthePeoplesBankofChina,thecentralbank,warnedhissuccessorsinaspeechattheweekend"tokeepacloseeyeonwhatwillhappennext"dbycapitaloutflowsinemergingeconomies,especiallythosethathavelargedebts."Theinteractiveimpactofsmall-probabilityeventscouldleadtosignificantresults,"lbankGovernorYiGangidentifieditwasin"acomfortablerange""Ifthereweremajorfundoutflowsandexcessivemarketvolatility,thecentralbankcouldbepressuredtohikelocalinterestratestosupportthecurrencyandavertundermininginvestorconfidence,"saidJonathanCornish,terprisesandincreasefundingcosts,especiallygiventhecurrenthighlevelofprivate-sectorcreditinChina,althoughthePBOChasrespondedtorecentFedhikes,accordingtoCornish,whopredictedtheFed,chiefemergingmarketsequitystrategistandheadofLatAmEquityResearchwithJPMorgan,,andthecentralbankbalancesheetnormalizationwilllikelyresultinrisinglong-termratesovertimeinemergingmarkets."Thereislimitedroomforfurthersovereignspreadcompressionacrossemergingmarkets,"hesaid."Thedriversbehindemergingmarketseconomicgrowtharegrowinglargeandincludeasolidpickupinglobaltradefuelingmorebenignemergingmarketdynamicsviaasustainedriseinprivatesectorconfidenceandthecreditimpulseturningpositiveforthefirsttimesince2014."    10月30日晚间,深交所再度发布《关于完善可转换公司债券盘中临时停牌制度的通知》,对于可转债盘中临时停牌制度实施了更加严格、细化的规定,同时废止了此前发布的(深证会〔2020〕268号)通知,新规则自2020年11月2日起施行。中国共产党第十九届中央委员会第五次全体会议,于2020年10月26日至29日在北京举行。(五)思客禁止的行为用户在思客发布信息时,必须遵守国家有关法律规定,并承担一切因自己发布信息不当导致的民事、行政或刑事法律责任。 而事实上,从购房人交首付网签时,这一情况就已经出现。记者从昨天召开的检查总结会上了解到,在本轮被检查的3600多个小区中,代表反馈认为“两条例”实施以来小区环境得到改善的有3506个,占比%。那么,这些没有进入监管专用账户的钱去了哪呢?  记者了解到:从2019年起,法院通过强制执行的方式,从泰禾锦绣等多家泰禾系公司的银行账户中,共计扣了10多亿元资金,归还给泰禾的债权人——芜湖融普明投资中心。  “这次快乐操场我们首先来到石家庄平山、井陉这两所学校,10月28日我们将启程赶往张家口,为那里的孩子们送去体育器材和设施。  庄女士介绍,在枝江法院重新审判期间,还发生了一个插曲:2020年8月31日,枝江法院作出《刑事裁定书》,以该院在审理过程中无法提押曹诗华开庭、无法继续审理为由,中止了该案的审理。从城市情况看,前三季度商品房销售面积有13个城市同比增长,数量比上半年增加7个。,张桂梅还将个人工资、奖金和社会捐款100多万元人民币投入教育事业。、ag真人试玩网址、  10月27日—29日,福建省消防救援总队在福建将乐县开展72小时“全流程、全要素、全力量”的高层建筑跨区域灭火救援实战拉动演练,此次演练调集福建全省10个支队高层建筑灭火救援专业队,包括3支重型队、7支轻型队,总队训保支队以及各支队通信、战勤保障力量和公安、交警、森林消防、工程机械、乡镇专职队等相关联动力量参演。,尤其是在疾病预防中不可或缺的疫苗,成为公共卫生防疫专区中的一大亮点。。

加强出土文物和遗址研究阐释,强化跨学科协同,讲好三星堆与中华文明起源发展的故事。台湾《联合报》20日评论称,亲日团体欲在阳明山设日本天皇纪念碑,遭台北市政府拒绝。如果疫情能够在12月初得到控制,单日新增确诊病例明显下降,官方届时就有可能宣布放松管制措施,在圣诞消费季之际重新实施宵禁,取代目前的“封城”。,村民朋友们还希望这种健康向上、参与性强的活动能够多多举办,营造全民健身、和谐健康的乡村氛围。”他提到。  中国和平统一促进会香港总会会长姚志胜表示,“十三五”时期,中央带领全国各族人民开拓创新、砥砺前行,加快经济结构调整步伐,积极应对风险挑战,实现经济持续稳定增长和人民生活水平不断提高。并且,银行贷款、债券、信托等融资渠道都被涵盖在统计监测范围之内。,mg真人电子大家早已达成约定,除了定期看望严溪,还要陪她聊天,帮她解难。(完)  韩正、孙春兰、胡春华、刘鹤、魏凤和、王勇、王毅、肖捷、赵克志出席。”格尔木炼油厂党委书记、副厂长曾传刚说,“同时,对提高企业产品附加值与经营效益,改善高原成品油供给侧结构,降低本土用户消费成本,支持藏区经济社会和国家边防事业发展有着积极作用。 其中23省份增速超过全国,西藏、黑龙江、贵州夺得前三。  规范强调,公路限速标志的设计涉及公路交通安全管理和公众接受程度等,在进行限速标志设计时,建议加强与有关部门和公众代表的沟通协调,主动听取其对限速标志设计的意见。价格方面,在房住不炒的主基调下,楼市仍以“稳为主”。  教育部考试中心也提醒,符合条件的教育类研究生、公费师范生可参加学校组织的教育教学能力考核,也可自愿参加国家中小学教师资格考试,申请认定相应的教师资格。,  此前,华山医院感染科主任张文宏在受访时称,马上要召开进博会了,上海已经做了非常好的整体规划,采取了闭环管理的方式,加大了检测力度,请广大市民不要过于担心,好好享受进博会带给上海的繁荣。,  福奇说,“在今后几周到几个月里,我们的处境很危险。(冯其予)  中国驻德国使馆特别提醒,建议德国以外乘客避免来德国转机、建议自德国赴华人员在德国检测后乘坐直航航班赴华。。

热门关键词 : 无人驾驶  自动驾驶  德邦  汽车  高精度 

官方公众号
技术首页 解决方案 技术论文 应用案例 产品体验 技术标准
您的位置 : 首页 > 技术
解决方案

收藏打印评论

Mobileye公布最新自动驾驶方案

作者:admin 来源:佐思汽车研究 发布时间:2020年10月12日

[摘要]2020年9月24日,吉利汽车与Mobileye正式签约,将使用EyeQ5做自动驾驶,同时,Mobileye也公布了最新的自动驾驶方案。

[关键词]Mobileye 自动驾驶

2020年9月24日,吉利汽车与Mobileye正式签约,将使用EyeQ5做自动驾驶,同时,Mobileye也公布了最新的自动驾驶方案。

11个摄像头中,4个鱼眼短距离的泊车用摄像头,7个远距离自动驾驶用摄像头,包括前向6个,后向1个。与EyeQ4最大不同之处在于三目摄像头被双目取代了,三目摄像头实际是单目摄像头在不同FOV上的扩展,特斯拉和国内新兴造车的辅助驾驶或自动驾驶方案都是采用三目。而Mobileye这次没有用三目,挡风玻璃后视镜位置是两个单目摄像头,FOV分别是28度和120度。

考虑到两个摄像头之间的距离,显然不是奔驰那样传统的Stereo Camera立体双目摄像头,并且根据这两个摄像头的FOV看,也不是主摄像头。倒车镜上则有一个FOV为100度的摄像头,A柱下方还有一个侧向的FOV为100度的摄像头。 实际上Mobileye的前部六个摄像头(可能后部的摄像头也参与了)构成了SfM(Structurefrom Motion)。Stereo Vision(立体视觉)SfM比较稀疏,再进一步稠密化就是Multi ViewStereo,即MVS。虽然这七个摄像头都是单目,但他们是合在一起工作的,应该叫多目立体视觉。 Mobileye有关SfM的专利主要有三个,一个是2014年的DenseStructure from motion,另一个是2017年的StereoAuto-Calibration From Structure-from-motion,还有一个是2020年的COMFORTRESPonSIBILITY SENSITIVITY SAFETY MODEL(长达197页),其中虽未提及SfM具体算法,但描述了SfM Stereo Image的处理流程。

Mobileye公布最新自动驾驶方案

Mobileye的Stereo Image处理流程

自动驾驶领域,感知部分的任务就是建立一个准确的3D环境模型。深度学习加单目三目是无法完成这个任务的。单目和三目摄像头的致命缺陷就是目标识别(分类)和探测(Detection)是一体的,无法分割的。

必须先识别才能探测得知目标的信息,而深度学习肯定会出现漏检,也就是说3D模型有缺失,因为深度学习的认知范围来自其数据集,而数据集是有限的,不可能穷举所有类型,因此深度学习容易出现漏检而忽略前方障碍物,如果无法识别目标,单目就无法获得距离信息,系统就会认为前方障碍物不存在危险,不做任何减速,特斯拉多次事故大多都是这个原因。 传统算法,则可能无法识别前方障碍物,但依然能够获知前方障碍物的信息,能够最大限度地保证安全。当然这需要传感器配合,激光雷达和双目立体视觉都是以传统算法为核心(因为它不需要识别目标,自然就不需要深度学习,当然你也可以用深度学习处理激光雷达数据,但不是为了识别目标)。

其次,深度学习是一个典型的黑盒子系统,汽车上任何事物都必须具备可解释性和确定性,深度学习并不具备。传统车厂尽量避免在直接有关汽车安全领域使用深度学习,当然,深度学习是识别目标准确度最高的方法,不得不用。大部分车厂会坚持使用可解释的具备确定性的传统图像算法,直到深度学习变成白盒子。

Mobileye公布最新自动驾驶方案

上图为Waymo深度学习科学家drago anguelov 2019年2月在MIT在讲述无人车感知系统时,坦承机器学习的不足,单目系统漏检无法避免,特别是在交通复杂的中国。深度学习的漏检和算力没有任何关系,再强大的算力也无法避免漏检,也就无法避免事故。 若要解决漏检这个问题,或者说构建一个没有缺失的3D环境模型就必须用将识别与探测分离,无需识别也可以探测目标的信息,忘掉深度学习,传统的做法是激光雷达和双目立体视觉。但激光雷达商业化,车载化一直进展缓慢,双目的缺陷是立体匹配算法门槛太高,在线标定非常困难,只有奔驰、斯巴鲁、路虎和雷克萨斯运用的比较好。宝马虽然高端车型使用双目,但实测结果并不理想,宝马如今也部分放弃了双目路线,电动SUV领域还未放弃双目。

除了激光雷达和双目立体视觉外还有一种方法,这就是今天要说的主角:SfM。在双目立体视觉中,两个相机之间的相对位姿是通过标定靶精确标定出来的,在重建时直接使用三角法进行计算;而在SfM中该相对位姿是需要在重建之前先计算的。双目必须两个镜头输入两张照片双目重建方法,SfM和MVS属于单目重建多目立体视觉,输入的是一系列同一物体和场景的多视图。SfM得到的通常是稀疏点云,而经过MVS处理极线约束后可建立稠密点云,可以媲美激光雷达点云,也就是Mobileye所说的Vidar。

Mobileye公布最新自动驾驶方案

SfM的框架图

Structure fromMotion(SfM)是一个估计相机参数及三维点位置的问题。一个基本的SfM pipeline可以描述为:对每张2维图片检测特征点(feature point),对每对图片中的特征点进行匹配,只保留满足几何约束的匹配,最后执行一个迭代式的、鲁棒的SfM方法来恢复摄像机的内参(intrinsic parameter)和外参(extrinsic parameter)。并由三角化得到三维点坐标,然后使用Bundle Adjustment进行优化。常见的SfM方法可以分为增量式(incremental/sequentialSfM),全局式(global SfM),混合式(hybrid SfM),层次式(hierarchica SfM)。这些都是传统OpenCV算法,跟深度学习无关,而如今,简单易学深度学习横扫一切,复杂难学的传统算法人才非常稀缺,导致SfM几乎没有商业化的例子。

SfM最初是假定相机围绕静态场景运动,实际就是相机获取在目标不同位置的图像,因此可以用放置多个相机取代运动的单一相机。为了避免干扰,28度FOV与两个100度FOV的摄像头构成SfM系统。SfM通常针对静止目标(古建筑物居多),移动目标难度极大,干扰因素比较多,大部分人都望而却步。 在MVS重建精准3D尺寸模型领域有个难点,即尺度因子不确定性,这个可以用其他传感器如高精度IMU获取真实尺寸校准,但高精度IMU太贵了,还有一种方法就是DNN。也可以看作用先验尺寸数据推算实际尺寸。当然也有传统的非深度学习方法。

Mobileye公布最新自动驾驶方案

上图即Mobileye的VIDAR,基于比较简单的神经网络DNN,对算力要求远低于图像识别分类的CNN。基于深度学习的3D点云和mesh重构是较难以计算的,因为深度学习一个物体完整的架构需要大量数据的支持。传统的3D模型是由vertices和mesh组成的,因此不一样的数据尺寸data size造成了训练的困难。所以后续大家都用voxelization(Voxel)的方法把所有CAD model转成binary voxel模式(有值为1,空缺为0)这样保证了每个模型都是相同的大小。利用一个标准的CNN结构对原始input image进行编码,然后用Deconv进行解码,最后用3D LSTM的每个单元重构output voxel。3D voxel是三维的,它的精度成指数增长,所以它的计算相对复杂。

这个多目立体视觉制造出来的VIDAR与真实的Lidar当然有一定差距,与传统的双目立体视觉相比精度也有一定差距,毕竟双目立体视觉发展了20年,不过多目比双目覆盖面更广。

Mobileye公布最新自动驾驶方案

Mobileye SuperVision的系统框架图

在2020年Mobileye的专利里也提到了双处理器设置,第一个视觉处理器检测道路标识、交通标识,并根绝ROADBOOK做定位,第二个视觉处理器则处理SfM,并发送到第一个视觉处理器,构建起一个带有完整道路结构的3D环境模型。 和英伟达、特斯拉以及一堆视觉加速器厂家比,Mobileye并不擅长硬件高算力,EyeQ5的算力只有24TOPS,低于英伟达Xavier的32TOPS,2022年即将量产的Orin高达200TOPS。

Mobileye擅长的是算法,SfM和MVS将筑起一道算法护城河,并借此提高安全。EyeQ5预计在2021年3月量产,尽管其算力与许多国内初创厂家相比都低,但高算力不代表安全,EyeQ5依然获得吉利、宝马等4个大整车厂的订单。 加入佐思数据平台会员,可获得Mobileye立体视觉专利完整版。

本网转载并注明其他来源的稿件,均来自互联网或业内投稿人士,版权属于原版权人。转载请保留稿件来源及作者,禁止擅自篡改,违者自负版权法律责任。
关注

网友评论文明上网,理性发言,拒绝广告0条评论

庄闲概率分析软件 fun88官网登录 永乐国际平台下载 奇迹娱乐下载 pt印加帝国头奖技巧 永利游戏网站平台 黄金城官方网站 600万娱乐开户